对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际。对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性。对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算。对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合。 www.jiaoshi66.com分页标题#e#
(4)对实践能力的考查主要采用解决应用问题的形式。命题时要坚持贴近生活,背景公平,控制难度的原则,试题设计要切合我国中学数学教学的实际,考虑学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平。
(5)对创新意识的考查是对高层次理性思维的考查。在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性。精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题。
数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。
Ⅲ.考试内容
1.平面向量
考试内容:
向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。
考试要求:
(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
(2)掌握向量的加法和减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
【导读】通常以选择、填空题型考查本章的基本概念和性质。此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。平面向量的几何表示是平面几何性质的反映,向量的表示可以使平面几何的各类性质的表示及证明更为直观,且较易理解与接受。
【试题举例】(2008•北京)
已知向量a与b的夹角为120°,且|a =|b =4,那么b•(2a+b)的值为 .
【答案】0
【解析】b•(2a+b)=2a•b+b2=2|a •|b cos120°+16=0,考查向量的运算,属于容易题。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
【导读】向量的坐标表示,实际上是向量的代数表示。在引入向量的坐标表示后,即可使向量运算完全代数化,将数与形紧密地结合起来,这样很多几何问题的证明,就转化为我们熟知的数量运算,这也是中学数学学习向量的重要目的之一。要注意两个向量的数量积,其结果是数量而不是向量,两个向量的数量积是两个向量之间的一种乘法又称点乘. www.jiaoshi66.com分页标题#e#
【试题举例】(2008•湖北)
设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)•c=( )
A.(-15,12) B.0 C.-3 D.-11
【答案】C
【解析】C [解析]∵a=(1,-2),b=(-3,4),c=(3,2),
∴(a+2b)•c=(1-6,-2+8)•(3,2)=-15+12=-3,故应选C.
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用。掌握平移公式。
【导读】在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;③向量作为工具的应用。向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切。
【试题举例】(2008•辽宁)
将函数y=2x+1的图象按向量a平移得到函数y=2x+1的图象,则( )
A.a=(-1,-1) B.a=(1,-1) C.a=(1,1) D.a=(-1,1)
【答案】A
【解析】将函数y=2x+1的图象向左平移1个单位可得函数y=2x+1+1的图象,再将该函数图象向下平移1个单位可得函数y=2x+1的图象,由此可得平移向量a=(-1,-1),故应选A.
2.集合、简易逻辑
考试内容:
集合。子集。补集。交集。并集。
逻辑联结词。四种命题。充分条件和必要条件。
考试要求:
(1)理解集合、子集、补集、交集、并集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
【导读】数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思维方法解决问题。学会运用数形结合、分类讨论的思维方法分析和解决有关集合的问题,形成良好的思维品质。
【试题举例】
已知集合S={x∈Rx+1≥2ou },T={-2,-1,0,1,2},则S∩T=( )
A. {2} B.{1,2} C. {0,1,2} D.{-1,0,1,2}
【答案】B
【解析】(直接法) www.jiaoshi66.com分页标题#e#S={x∈Rx+1≥2}⇒S={x∈Rx≥1},T={-2,-1,0,1,2},故S∩T={1,2}.
(排除法)由S={x∈Rx+1≥2}⇒S={x∈Rx≥1}可知S∩T中的元素比0要大,而C、D项中有元素0,故排除C、D项,且S∩T中含有元素1,故排除A项。故答案为B.
(2)理解逻辑联结词或且非的含义。理解四种命题及其相互关系。掌握充分条件、必要条件及充要条件的意义。
【导读】可以判断真假的语句叫做命题。构成复合命题的p或q可以是两个不相关的命题,判断命题真假的步骤是:(1)定形式;(2)判简单;(3)判复合,以真值表为依据。规律是或命题一真俱真,要假全假.且命题一假俱假,要真全真。当一个命题的真假不易判断时,可考虑判断其等价命题的真假。高考在考查其他部分内容时涉及集合的知识。很少有正面考查逻辑的内容。逻辑与充要条件的知识往往是和其他知识结合起来并汇考查。
【试题举例】
a=2是直线ax+2y=0平行于直线x+y=1的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】C
【解析】当a=2时,直线2x+2y=0平行于直线x+y=1,则是充分条件;直线ax+2y=0平行于直线x+y=1时有:a=2,则是必要条件,故是充分必要条件。
3.函数
考试内容:
映射。函数。函数的单调性、奇偶性。
反函数。互为反函数的函数图象间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。
对数。对数的运算性质。对数函数。
函数的应用。
考试要求:
(1)了解映射的概念,理解函数的概念。
【导读】映射A→fB中,A中元素无剩余、一对一或多对一。函数是非空数集上的映射,其中值域是映射中象集B的子集.函数图象与x轴垂线至多有一个交点,但与y轴垂线的公共点可能没有,也可任意个。函数图象一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图象。函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂。函数有两种定义,一是变量观点下的定义,一是映射观点下的定义。复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系、两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用。 www.jiaoshi66.com分页标题#e#
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页
tag: 高考数学高考数学复习资料,高考数学复习资料大全,高中学习 - 高考复习 - 高考数学复习资料