标签:七年级下册数学教案,七年级上册数学教案,初中数学教案,http://www.jiaoshi66.com
数学七年级第二章《有理数》教学设计,
计算(能简便的尽量简便):
(5)(-23)×(-48)×216×0×(-2); (6)(-9)×(-48)+(-9)×48;
(7) 24×(-17)+24×(-9).
(三)、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
练习设计
1.计算:
(7)(-7.33)×42.07+(-2.07)(-7.33);
(8)(-53.02)(-69.3)+(-130.7)(-5.02);
板书设计
§2.9有理数的乘法(2)
(一)知识回顾 (三)例题解析 (五)课堂小结
例4、例5
(二)观察发现 (四)课堂练习 练习设计
教学后记
§2.10有理数的除法
教学目标
1.使学生理解有理数倒数的意义;
2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;
3.培养学生观察、归纳、概括及运算能力.
教学重点和难点
重点:有理数除法法则.
难点:(1)商的符号的确定.
(2)0不能作除数的理解.
教学方法
启发式教学
教学过程
(一)、从学生原有认知结构提出问题
1.叙述有理数乘法法则.
2.叙述有理数乘法的运算律.
3.计算:
(1)3×(-2); (2)-3×5; (3)(-2)×(-5).
(二)、导入新课
因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;
同样-3×5=-15,解简易方程-3x=-15,得x=5.
在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.
三、讲授新课
1.有埋数的倒数
0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)
提问:怎样求一个数的倒数?
答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分数再求倒数.
什么性质
所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.
这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.
2.有理数除法法则
利用有理数倒数的概念,我们进一步学习有理数除法.
因为(-2)×(-4)=8,所以8÷(-4)=-2.
由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即
除以一个数等于乘以这个数的倒数.
0不能作除数.
例1 计算:
(1) ;
(2) ;
数学七年级第二章《有理数》教学设计由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com
www.jiaoshi66.com
(3)
解(1);
(2) ;
(3)
课堂练习
1.写出下列各数的倒数:
(1) ; (2) ; (3) –5; (4) 1; (5) –1; (6) 0.2
2.计算:(1) ; (2) ; (3)
(4) ; (5)
3.有理数除法的符号法则
观察上面的练习,引导学生总结出有理数除法的商的符号法则:
两数相除,同号得正,异号得负.
掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:
两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不为0的数,都得0.
例2 化简下列分数:
(1) (2)
解
(1)
(2)
例3 计算:
(1) ;
(2)
解
(1)
(2)
(四)、小结
1.指导学生看书,重点是除法法则.
2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.
练习设计
习题2.10 1、2、3、4、5题
板书设计
§2.10有理数的除法
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2、例3
(二)观察发现 (四)课堂练习 练习设计
教学后记
§2.11有理数的乘方(1)
教学目标
1.理解有理数乘方的概念,掌握有理数乘方的运算;
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3.渗透分类讨论思想.
教学重点和难点
重点:有理数乘方的运算.
难点:有理数乘方运算的符号法则.
教学方法
启发式教学
教学过程
(一)、从学生原有认知结构提出问题
在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?
一般地,我们有:
n个相同的因数a 相乘,即a·a·…·a,记作
n个a
(n是正整数)
在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.
(二)、讲授新课
例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.
这种求几个相同因数的积的运算,叫做乘方(involution),乘方的结果叫做幂(power).在中,a叫作底数,n叫做指数, 读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂.
例如,中,底数是2,指数是3,读作2的3次方,或2的3次幂.
一个数可以看作这个数本身的一次方,例如8就是,通常指数为1时省略不写.
一般地,在an中,a取任意有理数,n取正整数.
我们知道,乘方和加、减、乘、除一样,也是一种运算,an就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.
例1 计算:
(1) ;(2) ;(3) .
解:
(1) =(-2)(-2)(-2)=-8,
(2) =(-2)(-2)(-2)(-2)=16,
(3) =(-2)(-2)(-2)(-2)(-2)=-32.
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
任何一个数的偶次幂是什么数?
任何一个数的偶次幂都是非负数.
你能把上述的结论用数学符号语言表示吗?
当a>0时,an>0(n是正整数);
当a=0时,an=0(n是正整数).
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
a2n-1=-(-a)2n-1(n是正整数);
a2n≥0(a是有理数,n是正整数).
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
让三个学生在黑板上计算.
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别.
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.
课堂练习 计算:
(2)(-1)20xx,3×22,-42×(-4)2,-23÷(-2)3;
(3)(-1)n-1.
(三)、小结
让学生回忆,做出小结:
1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.
练习设计
1.当a是负数时,判断下列各式是否成立.
(1)a2=(-a)2; (2)a3=(-a)3;
2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
3.若(a+1)2+|b-2|=0,求a20xx·b3的值.
板书设计
§2.11有理数的乘方(1)
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计 教学后记
§2.12 科学记数法
教学目标
使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.
教学重点和难点
重点:正确运用科学记数法表示较大的数.
难点:正确掌握10的幂指数特征.
教学方法
启发式教学
教学过程
(一)、从学生原有认知结构提出问题
1.什么叫乘方?说出103,-103,(-10)3的底数、指数、幂.
2.计算:(口答)
3.把下列各式写成幂的形式:
4.计算:101,102,103,104,105,106,1010.
(二)、导入新课
由第4题计算
105=100000,
106=1000000,
1010=10000000000,
左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等.但是像太阳的半径大约是696 000千米,光速大约是300 000 000米/秒,中国人口大约 13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法.
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页