96的约数的个数:(5+1)×(1+1)=12(个)
扣除约数1和96,则约数的个数是:12-2=10(个)
答:共有10种拿法。
3.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?
思路分析:在1~100的自然数中,把有约数2的数、有约数3的数、有约数5的数扣除,就是要求的答案的个数。
在1~100的自然数中,
有约数2的数有:100÷2=50(个)
有约数3的数有:100÷3=33(个)……1
有约数5的数有:100÷5=20(个)
有约数2、3的数有:100÷(2×3)=16(个)……4
有约数3、5的数有:100÷(3×5)=6(个)……10
有约数2、5的数有:100÷(2×5)=10(个)
有约数2、3、5的数有:100÷(2×3×5)=3(个)……10
解:在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的自然数共有:100-[(50+33+20)-(16+10+6)+3]=26(个)
4.用0、2、4、5、7组成一个五位数,使这个数是除以5余4的最小的五位数。
思路分析:用0、2、4、5、7组成的五位数有很多,如24570、24507、24057、20457……满足最小五位数这个条件的最高位上的数字必须是最小 的那个数字,而这五个数字其中最小的那个数字是0,0在这五位数中不能排首位,所以只能把2排在最高位打头。题目的要求是最小的五位数,千位上的数字必须是0,百位上是5,十位上是7,个位上是4。那么为什么百位上不是4呢?因为题目的要求是除以5余4。所以百位上的数字不能是4,只能把4放在个位上。
解:用0、2、4、5、7组成的一个五位数,使这个数除以5余4,还须是最小的五位数,那只能是20574。
5.一个长方体的3个侧面积分别为s1=20平方厘米,s2=15平方厘米,s3=12平方厘米。求这个长方体的体积是多少?
思路分析:根据长方体6个面的特征,我们知道:每个长方体的6个面都是相对的两个面的面积相等。但是已知的3个面的面积都不相等,我们就可以推出:已知的3个面一定相交于一个顶点。这样,我们就可以画出这个长方体的图。
然后把已知条件都标在图上,假设这个长方体的长、宽、高分别为a、b
数学教案-约数和倍数的意义由www.jiaoshi66.com收集及整理,转载请说明出处www.jiaoshi66.com解: 20×15×12
=2×2×5×3×5×3×2×2
=(2×2×3×5)×(2×2×3×5)
=60×60
∴abc=60
答:这个长方体的体积是60立方厘米。
tag: 数学五年级数学教案,小学五年级数学教案,五年级上册数学教案,优秀教案 - 数学教案 - 五年级数学教案